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Accurate neutron-diffraction measurements from crystals suffering from severe extinction have been 
used to test the recent general theory of extinction of Zachariasen (Acta Cryst. (1967). 23, 558). Anal- 
ysis of these measurements indicates that certain of the approximations made in the theory are not 
generally valid and result in systematic deviations between theory and experiment, namely a marked 
angle-dependent effect and an inadequacy of the theory for strong extinction. The original theory is 
therefore extended to take these factors into account and to give agreement with the observed data. 

Introduction 

Theoretical formulae for the Bragg intensities of dif- 
fracted X-rays or neutrons have been derived rigorously 
only in the limiting cases of an ideally perfect crystal 
(the dynamical theory) and an ideally imperfect crystal 
(the kinematical theory). In general a given crystal will 
lie somewhere between these two extreme cases and 
modification of the kinematical theory is necessary to 
take into account the degree of perfection of the crystal. 
The treatment is normally based on the mosaic model 
for which the crystal is assumed to consist of a num- 
ber of small perfect crystal domains, each slightly mis- 
oriented with respect to its neighbours. 

Zachariasen (1967) has recently described a general 
theory of X-ray diffraction in crystals, based on an 
approximate treatment of the coupling between in- 
cident and diffracted beams. In this theory he derives 
a general formula for the intensity diffracted by a finite 
perfect crystal and hence the intensity diffracted by a 
finite mosaic crystal. Because of the complexity of the 
problem a number of approximations are introduced 
and the ultimate test of this theory is therefore, as 
Zachariasen states, a test of its agreement with experi- 

ment. Zachariasen himself has carried out a number of 
experimental tests using X-ray diffraction data (see 
Zachariasen, 1968a, b, c, 1969) and has obtained ex- 
cellent agreement for the crystals studied: lithium 
fluoride, quartz, phenakite, hambergite and calcium 
fluoride. In addition, other experimental X-ray diffrac- 
tion tests have provided good agreement with the 
theory (see e.g. Chandrasekhar, Ramaseshan & Singh, 
1969). 

The Zachariasen formulae have also been applied to 
accurate neutron diffraction measurements on several 
crystals. These include barium fluoride (Cooper, Rouse 
& Willis, 1968) and strontium fluoride and calcium 
fluoride (Cooper & Rouse, 1970). For barium fluoride 
only limited strongly extinguished data were collected 
but the theory held up to a level of extinction of about 
16 per cent in intensity (at 2 =  1-038 A.). For calcium 
fluoride complete two-dimensional hkk data were col- 
lected initially at a wavelength of 0-877 A and a pre- 
liminary analysis gave a value of r* [see equations (16)] 
comparable to that obtained by Zachariasen (1968b)" 
However, once again the theory did not correct the 
strongest intensities adequately and so a more extensive 
study was undertaken. Complete two-dimensional neu- 
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tron hkk data were collected from two crystals in 
which the extinction is quite severe, a sphere of stron- 
tium fluoride of diameter 3 mm and a cylinder of cal- 
cium fluoride of diameter 3 mm and length 7 ram. 
Measurements were made at three wavelengths in each 
case, in order to provide a more stringent test of the 
theory. However, one set of data for strontium fluoride 
showed anomalous background effects and was there- 
fore not used in the extinction analysis; these effects will 
be discussed elsewhere (Cooper & Rouse, 1970). 

Analysis of these neutron measurements indicated 
that certain of the approximations made in the theory 
are not generally valid, although the resultant discrep- 
ancies are not generally so large for X-ray diffraction 
measurements. However, the limitations of the theory 
are indicated, to some extent, by an analysis of recent 
X-ray diffraction measurements on single crystals of 
calcium fluoride (see Cooper, 1970). It is the purpose 
of this paper, therefore, to demonstrate the short- 
comings of the Zachariasen theory and to extend it to 
account for the observed neutron diffraction measure- 
ments. 

Z a e h a r i a s e n  t h e o r y  

In order to form a basis for our development the rel- 
evant parts of the Zachariasen theory are outlined 
below. 

(a) Small perfect crystal 
If I0 and I are the intensities of the incident and 

diffracted beams respectively, then the fundamental 
equations which these quantities must satisfy are 

~10 
- alo +aI  ( l a )  

cqh 

- ~ x + ~ I o ,  ( l b )  
c~tz 

where h and tz represent the depth below the crystal 
surface measured along the two propagation direc- 
tions (see Zachariasen, I967, Fig. 1) and a is the dif- 
fracting power. 

A function (p(~r) is introduced such that the total 
power of the diffracted beam P(el) is 

I c~I P(ex)= Ofz dv=JoVa~o(a) , (2) 

where el is the direction of the incident beam, J 0  is 
the incident intensity and v is the irradiated crystal 
volume. 

The extinction factor y, the ratio of the diffracted 
integrated intensity to that calculated on the kine- 
matical theory, is then 

y = Q - a  I a(0(a)del , (3) 

where Q is the well known crystallographic quantity, 
which for X-rays is 

e 2 FK 2 

mc2 V I 
Q . . . . . . . .  ' 23 cosec 20,  (4) 

where F is the structure factor, K is the polarization 
factor and the other symbols have their usual meaning. 

Power series solution of equations (1) can be ob- 
tained for a perfect crystal of any shape totally im- 
mersed in the incident beam and the result for 
OI/Ot2 is 

c3I 

6~t2 n n--. 

t(")= l~ (7)2tln-ltJ2. (5b) 
) 

For a crystal of arbitrary shape 

~0(o')= E (nay)n t<") (6a) 
n 

where 
(, 

t (n) = v-1 1 t (n)dv (6b) 

Zachariasen gives the formulae for (p(a) for a sphere 
for small scattering angles as 

" 16 - 2  so  - 3  ( 7 a )  ~o(a)= 1 - a t  +~-~(o-t) --or(at)  + . . .  

and for the backward scattering direction as 

~p(o') = 1 -off  + 4~--~(af)z-... (7b) 

with [=~r,  where r is the radius of the sphere. 
He then assumes that it is normally true that a[,~ 1 

at large scattering angles and that the following equa- 
tion is a good approximation for ~0(~r) at any scatter- 
ing angle when M is small: 

1 
~0(a)= 1 +~ i  (8) 

Expressions similar to equation (7a) are also given 
for various other crystal shapes and it is concluded 
that equation (8) is, in general, a reasonable approxi- 
mation for any crystal shape. 

In order to derive a simple expression for y from 
this equation an approximate form for the scattering 
power is used, viz. 

~r(el) -~ 4Q~ (9) 

with e = t_u/2 and t l  the mean thickness of the crystal 
normal to the incident beam. 

Equations (3), (8) and (9) then give 

y=(1  +2x) -1/2 (10) 

with 
x =  ~rQcd . (11) 

Because of the approximations involved in equa- 
tions (8) and (9) two other closed forms for y are sug- 
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gested, viz. tanh ~/3x/V-3x and tan- '  ~/3x/~/~.. These 
cannot be distinguished from equation (10) for small x 
but do differ significantly for x>>l. 

(b) Real crystal 
It is assumed that a real crystal consists of a large 

number of small perfect domains whose misalignment 
obeys an isotropic Gaussian distribution law, i.e. 

W(A)= }/2g exp (-- 2rcgZA z) (12) 

where A measures the angular deviation from the mean 
orientation. 

The analysis of § (a) is then repeated replacing o- by 
6, the mean diffracting power of the whole crystal, ta 
and tz by /'1 and 7"1, the corresponding paths in the 
whole crystal, and c~ by ~', where 

c~' =o:/V~2t-(Zc~/3g)2 . (13) 

Equation (11) is then replaced by 

x = ~  Qe 'T.  (14) 

If { is not negligible compared with • we must write 

x = ~  Qc~[[+(T- [)/V1 +(20~/3g)2]. (15) 

However, in the present paper we shall assume that 
f,~ T and that we can use equation (14). We shall also 
ignore absorption and polarization effects, both of 
which are detailed in Zachariasen's paper. 

Experimental test o f  the Zachctriasen theory 
The Zachariasen theory for a real crystal consisting 

of small spherical domains in which primary extinc- 
tion can be ignored can be summarized by the follow- 
ing equations: 

2 -  F~,y (16a) F c - 

y = (1 +2x)-1/2 (16b) 

x =  r*Q2-1T (16c) 

r* =r/[1 +(r/2g)2lm (16d) 

where Fc is the calculated extinguished structure factor, 
Fk is the theoretical kinematical structure factor and r 
is the domain radius. 

For the neutron diffraction experiments on calcium 
fluoride and strontium fluoride ~ is a constant for all 
measured reflexions and we can therefore write 

x =  CF~, cosec 20 (17) 

where C is a constant, proportional to r*, and it is 
then convenient to consider 1/y as a function of F~, 
cosec 20. 

The experimental intensities were corrected for ther- 
mal diffuse scattering using the isotropic approxima- 
tion (Cooper & Rouse, 1968) and the observed struc- 
ture factors, averaged over equivalent reflexions, were 
compared with those calculated according to equa- 
tions (16) and (17), adjusting C and the scale factor 

3 - / ~ /  

~obs ,////" 

./9" 
, . y / x  x - .  h + k + t = 4 n  

/ / / ~ ' , /  . h + k +  L= 4n_+l 
• / /~g"  "~' o h + k + l = 4 n + 2  

• y=(, ÷ 2x)-  
EOUAV,ON (29) 

o ~/'~'" 
,'o 

J FK2 cosec  2 e  

Fig. 1. 1/yobs as a function of ]/~0~2 cosec 20 for strontium fluoride at 2=0-865 A. The broken curve lepresents the function for 
1]y predicted by the Zachariasen theory such that agreement with experiment is obtained for the 4N data near 0=45 °. The 
solid curves are the functions predicted by equation (29). 
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to give agreement over the less severely extinguished 
reflexions. These reflexions were used to refine the 
values of the thermal parameters and a consistent set 
of data was obtained for each crystal with the values 
for different wavelengths on approximately the same 
scale. Fixed values of the scattering lengths were used 
for calcium (0.488 x 10 -12 cm) and fluorine (0.560x 
10 -lz cm). That for strontium, which has been less well 
established, was refined giving a final value of 0.690 
(+0 .012)x  10 -12 cm, in excellent agreement with the 
value of 0-683 (+0 .007)x  10 -lz cm obtained recently 
by Loopstra & Rietveld (1969). The final thermal par- 
ameters were Bsr=0"546 and BF=0.820 A 2 for stron- 
tium fluoride and Bca=0.330 and B~=0.505 A2 for 
calcium fluoride. Further analyses with various values 
of the thermal parameters showed that the expressions 
derived for the extinction are independent of these 
parameters. This will be discussed in more detail else- 
where (Cooper & Rouse, 1970). The values of C and 
the range of values of y obtained from this preliminary 
analysis are given in Table 1. These figures indicate 

the severity of the extinction" for the calcium fluoride 
crystal all reflexions were at least 25% extinguished 
and the strongest were almost 90 % extinguished. 

Table 1. Preliminary extinction parameters for neutron 
diffraction data from CaF2 and SrF2 

CaF2 

SrF2 

)~ C ymin ymax 
0"877 /~, 0"444 O" 11 0"75 
1"077 0"625 0" 11 0"71 
1 "339 0"789 0" 11 0"72 
0"746 0"052 0"23 0"99 

0"865 0"068 0"21 0"99 
1"077 0"148 0"15 0"99 

Systematic deviations from the Zachariasen theory 
were observed in each set of data, as can be seen from 
Figs. 1 and 2 where 1/y is plotted as a function of 
I/F~, cosec 20 for one set of data from each crystal. 
A marked angle dependent effect is observed, partic- 
ularly in the calcium fluoride data (Fig. 2). For the 

IO 
x 

7 -  
/ / 7  

/ / /  
4-  / / 7  

' l ,  

' -  

// 

2 - ¢ .  F2 - C Y L I N D E R  ( 0 ' 8 7 7  
,< h + k + l  = 4 n  
• h + k + l . =  4 n - + l  
o h + k + l . =  4 n + 2  

/ /  - -  EQUATION (34) 

/ 
/ 

/ 
I "  I ~ ~ I I I I I 
o 5 I 0  

~ / F K 2 C O S ¢ C  2 0  

Fig.2 .  1/yobs as a function of VF/~ 2 cosec  20 for calcium fluoride at 2=0.877 A. The broken curve represents the function for 
l/y predicted by the Zachariasen theory such that agreement with experiment is obtained for the 4N data near 0=45 °. The 
solid curves are the functions predicted by' equation (34). 

A C 26A - 4 
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fluorite structure the reflexions can be separated into 
three groups depending on the index sum (h+k+l) 
and there is then a direct correlation between angle 
and intensity for reflexions within a particular group. 
Deviation from the Zachariasen theory occurs at the 
higher angle (lower intensity) end of each group. In 
addition a further deviation from the theory also oc- 
curs for the very strong reflexions. 

It was thus concluded from this analysis that there 
are two major shortcomings of the Zachariasen theory; 
it does not provide for any angle dependence in the 
magnitude of the extinction as a function of intensity 
and it is not adequate for severe extinction (x>>l). 
These shortcomings arise from some of the approxima- 
tions introduced into the theory and in the following 
sections we shall show how they can be overcome to 
account for the observed neutron data. 

Extens ion  of  the theory 

(a) Angle dependence 
Comparison of equations (7a) and (7b) indicates that 

unless af~ 1 the expression for ~(a) may have a signifi- 

cant angle dependence. This will be particularly im- 
portant for neutron data since scattering lengths are 
essentially independent of angle so that strong reflexion 
of neutrons can occur over the entire range of angle. 
On the other hand the rapid decrease in the X-ray scat- 
tering factors tends to restrict the strongest X-ray 
reflexions to small scattering angles so that any angle 
dependence will be less apparent. This is illustrated in 
Fig. 3, which shows 1/y as a function of 0 for the cal- 
cium fluoride crystals used in the X-ray and neutron 
experiments (see Cooper, 1970, and Table 5). 

Calculation of tin) from equations (5b) and (6b) for 
a spherical domain and various values of the scatter- 
ing angle 0 lead to expressions which decrease with 
increasing 0, giving for 0=90° :  

~0(G) = 1 - 32 ( a i ) 2  + ( 1 8 )  - t r t  +z- ~ . . . .  

This is clearly in contradiction with equation (7b), 
and with the observed experimental data, which in- 
dicate that @(a) should increase with increasing 0. How- 
ever, it would appear that this is due to the fact that 
equation (5b) is only valid for 0=  0 and in general we 
should consider the functions 

IO 

9 -  x 
CALCIUM FLUORIDE 

8- ~ NEUTRONS ~-0"877 ~, 
7- ~ X- RAYS X=0'71 g 

\ ~ I. h+k+l.= 4n 
\ ~ 2. h+k , t=4n± l  

6- \ \\\ ~ 3 .  h+k+t=4n+_2 
5- \\ 

\ \ 

.=_ ,~ \ \  
. , /y  

2- 

I I 1 I "7 I 
'b ,o 20 ao oe) 40 so 60 70 

Fig.3. 1/yobs as a function of the scattering angle 0 for neutrons (2=0.877/~) and for X-rays (2=0.71 /~) for the crystals of 
calcium fluoride used in the two sets of experiments. 
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P 
tn=v-1 1 (tl +t'z) n dv (19) 

(see Zachariasen, 1965) where t~ is the path length of 
the diffracted beam from the point of diffraction to 
the emergent surface. Equations (5b) and (19) are 
equivalent for 0 = 0. 

In order to determine the angle dependence of ~0(a) 
we have calculated t n for n = 1 to 10 and for 0 = 0  to 90 ° 
in steps of 10 °. To a first approximation, for a[ not 

too large, we can consider tn(O) in the following form" 

tn(O)= tn(O) [fn(O)] (20a) 

with 

and 

fn(O)~_[f(O)] n-~ for  n >  1 (20b) 

J~(0) =J](0) = 1 (20c) 

f (O)=f2(O)~ 1 +½ sin 2.5 0.  (20d) 

The function f(O) is given in Table 2 together with 
the corresponding values of 1 +½ sin 2.5 0. For con- 
venience we have used the latter function in our anal- 
yses. Equation (20b) underestimates fn(O) increasingly 
for large n but is likely to be a valid approximation 
unless o-f is very large at large 0. 

Table 2. Values off(O) and 1 +½ sin 2"50 
for various values o f  0 

0 f(O) 1+½ sin 2"5 0 

0 ° 1"0000 1"0000 
10 1.0068 1.0042 
20 1.0254 1.0228 
30 1.0636 1"0589 
40 1.1124 1"1104 
50 1"1703 1-1712 
60 1.2302 1"2326 
70 1"2832 1"2853 
80 1"3200 1-3208 
90 1"3333 1"3333 

We shall therefore take as a reasonable approxima- 
tion: 

~o(a) = 1 - a[ + -~-~s(af)zf(O) - -~l (af)3[f(O)] 2 

+ ~(aO4[f(O)] 3 -  ~(a05[f(0)] 4 

+~(~0~[f(0)15-... (21) 
corresponding to equation (7a) for 0=0.  

If we assume, as in the derivation of equation (10a) 
from equation (7a), that or[ is small, then equation (21) 
gives 

[ 1 ] 1 [1 + 2 x . f ( 0 ) ]  -~/2 (22) 
y ' =  1 - f - - -~ -  +[/.(-~)- 

This equation should therefore be used instead of 
equation (10a) and may be expected to be valid for 
x < l .  

Extension of this theory to the case of a real crystal 
is given, as before, by using the expression for x as 
given by equation (14) or equation (15). 

(b) Severe extir.ction 
The expression for y given by Zachariasen has been 

derived by approximating the infinite series expression 
for ~0(o') by a closed form. This approximation is only 
valid for small a f (<  1) and hence the wrong form of y 
is predicted for large x, as shown by the experimental 
measurements. 

If we retain the expression for a(ei) in the form given 
for a parallelepiped, viz. 

sin 2 no~el 
a(el)=Q~ ( ~ e l )  2 , (23) 

we can retain ~0(a) in its series form and evaluate the 
corresponding series form for y from equation (3), 
integrating term by term. This requires the evaluation 
of integrals of the form 

s n = l f  ~_rc oo (Six--X) n dX (24) 

and we have therefore determined values of Sn for 
n=  1 to 20, as listed in Table 3 (values for n odd are 
included for completeness). 

(si . . . .  

H a n  

1 1 "000000 
2 1 "000000 
3 0"750000 
4 0"666667 
5 0"598958 
6 0"550000 
7 0"511024 
8 0"479365 
9 0"452921 

10 0"430418 
11 0"410963 
12 0"393926 
13 0"378844 
14 0"365371 
15 0"353239 
16 0-342240 
17 0"332208 
18 0"323009 
19 0"314534 
20 0"306693 

The resultant series for y is 

y = 1 - ," +-4,'2 _ s ~.3 + &_x 4 _ Ix  5 + 1...~x6 _ (25) 
- - ,  / 3 " ~  " 5 " ' "  " " " 

and the final problem is then to determine a closed 
form approximation which can be used over a reason- 
ably large range of x. 

Zachariasen has suggested the three forms" 

y =  tanh I / ~ / 3 ~  = 1 ,--t- 6,~2 s~ ~c3 + (26a) 

y=(1 +2x)-1/2 = 1 - - X ' q - ~ X 2 - - - ~ X  3 " ~  . . . (26b) 

y = t a n  -1V~/¢-~=l -x -q -gx2-g~-x3-q t - . . .  (26e) 

A C 26A - 4* 
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T h e s e  f u n c t i o n s  c a n n o t  be  d i s t i n g u i s h e d  w h e n  x is 
smal l  b u t  differ  a p p r e c i a b l y  w h e n  x>> 1. F o r  e x a m p l e ,  
t he  va lues  fo r  x = 1 0 ,  q u o t e d  by  Z a c h a r i a s e n ,  a re  
y = 0 . 1 8 3 ,  0-218 a n d  0.254 fo r  e q u a t i o n s  (26a),  (26b) 
a n d  (26c) respec t ive ly .  

I n  o r d e r  to  a l l o w  fo r  the  a n g l e  d e p e n d e n c e ,  d i s cus sed  
in (a) a b o v e ,  w e  m u s t  r e p l a c e  x in e q u a t i o n s  (26) by 
x .  f(O) a n d ,  as  in e q u a t i o n  (22), r ep l ace  y by  y ' ,  w h e r e  

[ ] 1 
y ' =  1 -  r i O )  + f~0}- y "  (27) 

Va lues  o f  Ycale f r o m  e q u a t i o n s  (26) a n d  (27) w e r e  
c o m p a r e d  w i t h  va lues  OfYobs = 2 2 Fo/F k fo r  the  n e u t r o n  
d a t a  a n d  a l t h o u g h  g o o d  a g r e e m e n t  c o u l d  be  o b t a i n e d  
fo r  x < 1 all  these  f u n c t i o n s  d e v i a t e d  f r o m  the  o b s e r v e d  
va lues  fo r  l a rge  x. A n u m b e r  o f  o t h e r  f u n c t i o n s  can  

T a b l e  4. Values of 1/Yobs, 1/Y'¢al¢, 1/yzaeh and f(O) for strontium fluoride 
2=0.865/~  2 =  1-077/~ 

h k l 1/Yobs 1/Y'calc 1/YZach f(O) 1/Yobs 1/Y'calc 1/YZach f(O) 
0 2 2 4"866 4"777 3"644 1"007 6"955 -- 5"241 1"016 
4 0 0 3"660 3"651 3"025 1"016 5"199 5"308 4"338 1"028 
4 2 2 3"146 3"093 2"693 1"027 4"510 4"375 3"859 1"047 
0 4 4 2"813 2"738 2"468 1"039 3"986 3"794 3"541 1"067 
4 4 4 2"277 2"295 2"167 1"064 3"198 3"097 3"130 1"111 
8 0 0 2"002 2"023 1"967 1"092 2"862 2"702 2"884 1"159 
8 2 2 1"930 1"923 1"890 1"106 2"703 2"570 2"807 1"184 
0 6 6 1"897 1"923 1"890 1"106 2"666 2"570 2"807 1"184 
4 6 6 1"748 1"770 1"767 1"136 2"440 2"406 2"750 1"236 
8 4 4 1"653 1"711 1"717 1"152 2"427 2"379 2"796 1"263 
0 8 8 1"465 1"558 1"588 1"218 
8 6 6 1"469 1"538 1"573 1"235 

12 0 0 1"455 1"527 1"567 1"253 
4 8 8 1"445 1"527 1"567 1"253 

12 2 2 1"449 1"527 1"574 1"270 
1 1 1 2"174 2"198 2"011 1"002 3"059 3"147 2"739 1"003 
3 1 1 1"616 1"644 1"589 1"010 2"116 2"183 2"075 1"018 
1 3 3 1"453 1"551 1"524 1"020 1"868 1"891 1"853 1"035 
5 1 1 1"376 1"387 1"376 1"031 1"732 1"739 1"732 1"054 
3 3 3 1"361 1"393 1"381 1"031 1"715 1"750 1"742 1"054 
5 3 3 1"421 1"283 1"282 1"056 1"578 1"561 1"582 1"096 
7 1 1 1"268 1"257 1"259 1"069 1"555 1"524 1"551 1"119 
1 5 5 1"261 1"254 1"255 1"069 1"530 1"517 1"544 1"119 
3 5 5 1"251 1"239 1"242 1"083 1"519 1"500 1"533 1"143 
7 3 3 1"243 1"217 1"221 1"097 1"489 1"457 1"507 1"168 
5 5 5 1"142 1"183 1"188 1"112 1"401 1"410 1"457 1"193 
9 1 1 1"207 1"179 1"184 1"127 1"445 1"419 1"476 1"219 
9 3 3 1"153 1"153 1"159 1"158 1"405 1"443 1"508 1"273 
1 7 7 1"191 1"155 1"161 1"158 1"415 1"448 1"515 1"273 
7 5 5 1"220 1"170 1"176 1"158 1"476 1"484 1"558 1"273 
3 7 7 1"223 1"159 l"166 1'174 1"478 1"555 1"656 1"301 

11 1 1 1"147 1"139 1"146 1"207 
5 7 7 1"258 1"125 1"13l 1"207 
9 5 5 1"113 1"124 1"130 1"224 

1l 3 3 1"193 1"139 1"147 1"242 
7 7 7 1"145 1"153 1"162 1"259 
1 9 9 1"157 1"150 1"160 1"295 

13 1 1 1"170 1"190 1"204 1"313 
11 5 5 1"221 1"209 1"224 1"313 
3 9 9 1"197 1"207 1"222 1"313 
2 0 0 1"416 1"433 1"412 1"003 1"759 1"814 1"768 1"005 
2 2 2 1"208 1"226 1"225 1"011 1"458 1"435 1"444 1"020 
6 0 0 0"917 1"088 1"091 1"045 1"246 1"181 1"197 1"077 
2 4 4 1"122 1"088 1"091 1"045 1"295 1"181 1"197 1"077 
6 2 2 1"089 1"069 1"072 1"057 1"239 1"146 1"161 1"099 
6 4 4 1"082 1"036 1"037 1"099 1"150 1"084 1"095 1"171 
2 6 6 1"043 1"029 1"030 1"114 1"121 1"120 1"081 1"197 

10 0 0 0"753 -- 1"016 -- 1"025 1"054 1"061 1"277 
10 2 2 0"961 -- 1"013 -- 0"982 1"059 1"067 1"305 
6 6 6 0"543 -- 1"013 -- 0"974 1"059 1"067 1"305 

10 4 4 1"015 l"007 1"007 1"226 
2 8 8 1"049 1"007 1"007 1"226 

R* (%) 2"68 6"35 2"22 6"55 

* R =v'.] l/Yobs-- i/y'ealcl/'El/Yobs or ~2[ l/Yob s -  1/YZachl/~l/Yobs. 
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be cons idered  which  are s imilar  for small  x bu t  tend 
to different values at  large x, such as 

[ l ] I 

y ' =  1 - j ~ - 0 ) -  +f(O)  

sinh-ll /-}x .f(O) ] 
l/_,}x-.-).i05_[i 7¢3x_f(O ~ - j ,  (28a) 

1 3 2 [1- 
3 3 

x { s i n h - l ( - } l / 2 x . f ( O ) ) - l n  ~ / /2x . f (O)}]"  (28b) 

In the above  theory  we have  considered firstly a 
spherical  d o m a i n  and  then extended this  to a real 

crystal  by replac ing f by IP. The theory  is therefore  
val id for a spherical  real crystal ,  bu t  m a y  require  
modif ica t ion  for a crystal  of  any  o ther  shape.  We  shall 
therefore  consider  the two cases for  which  we have  
exper imenta l  data ,  a spherical  crystal  and  a cyl indrical  
crystal ,  separately.  

(i) Spherical crystal 
A least -squares  f i t t ing was carr ied ou t  on  the groups  

o f  1/Yobs values, va ry ing  the scale fac tor  and  the value 
of  C [equat ion (17)] at  each wavelength ,  for  the var ious  
funct ions  of  1/y'ca~c as given f rom equa t ions  (26) and  
(28). No  single func t ion  gave a sa t i s fac tory  fit and  
combina t ions  of  the var ious  func t ions  were therefore  
used. The  final express ion adop ted  to p rov ide  a good  
fit for  the s t ron t ium fluoride da ta  is: 

Table  5. Values of 1/Yobs, 1/y'eajc, 1/yzaeh and f(O)./'or calcium fluoride 
2=0.877 A 2=1.077 A 

h k l l/yoes l/y'cale 1/yZaeh f(O) 1/yobs 1/y'ca~e l/yza¢h f(O) 
0 2 2 10"111 - 8"037 1"008 9"818 - 7"444 1"014 
4 0 0 8"493 9"392 6"628 1"019 8"247 8"237 6"192 1"033 
4 2 2 7"526 7"634 5"875 1"032 7"334 6"599 5"541 I"054 
0 4 4 6"180 6"508 5"368 1"046 6"077 5"584 5"119 1"077 
4 4 4 5"358 5"114 4"690 1"077 5"193 4"382 4"601 1"128 
8 0 0 4"614 4"278 4"242 1"110 4"583 3"712 4"348 1"184 
8 2 2 4"472 3"975 4"072 1"128 4"286 3"491 4"314 1"213 
0 6 6 4"262 3"975 4"072 1"128 4"108 3"491 4"314 1"213 
4 6 6 3"795 3"518 3"812 1"164 
8 4 4 3"710 3"344 3"718 1"183 
0 8 8 2"998 2"927 3"634 1"262 
8 6 6 2"863 2"895 3"756 1"283 
1 1 1 4"003 4"476 3"303 1"002 4"080 4"117 3"066 1"004 
3 1 1 2"988 2"930 2"455 1"012 2"982 2"700 2"308 1"020 
1 3 3 2"287 2"431 2"165 1"024 2"291 2"262 2"056 1"040 
5 1 1 2"298 2" 166 2"004 1"038 2"254 2"039 1"922 1"063 
3 3 3 2"155 2"185 2"017 1"038 2"166 2"056 1"934 1"063 
5 3 3 2"093 1"850 1"795 1"067 1"944 1"787 1"759 1"112 
7 1 1 1"887 1"779 1"748 1"083 1"827 1"741 1"733 1"139 
1 5 5 1"738 1"766 1"738 1"083 1"723 1"729 1"723 1"139 
3 5 5 1"753 1"729 1"716 1"100 1"676 1"718 1"726 1"166 
7 3 3 1"778 1"665 1'669 1"117 1"666 1"687 1"710 1"195 
5 5 5 1-522 1"564 1"586 1"134 1"512 1"626 1"664 1"224 
9 1 1 1"612 1"560 1"588 1"152 1"605 1"681 1"732 1"255 
9 3 3 1"499 1"494 1"535 1"190 
1 7 7 1"491 1-501 1"542 1"190 
7 5 5 1-561 1"554 1"592 1"190 
3 7 7 1"495 1"532 1"576 1"210 

11 1 1 1"503 1"498 1"553 1"249 
5 7 7 1"506 1"444 1"498 1"249 
9 5 5 1"349 1"467 1'526 1"270 

11 3 3 1"452 1"584 1"654 1"290 
2 0 0 4"950 5"511 3"879 1"003 4"796 5"075 3"597 1"006 
2 2 2 3"242 3"704 2"923 1"014 3"276 3"400 2"740 1.023 
6 0 0 2"187 2-320 2-129 1"054 2-257 2-191 2-059 1-090 
2 4 4 2"192 2"320 2"129 1"054 2"156 2"191 2"059 1"090 
6 2 2 2-158 2"116 1"997 1"069 2"085 2"027 1"956 1"115 
6 4 4 1"780 1"739 1"732 1"119 1"685 1"762 1"782 l'199 
2 6 6 1.602 1"659 1"670 1"137 1"583 1"728 1"765 1.228 

10 0 0 1"426 1"497 1"539 1"192 
10 2 2 1"506 1"464 l'511 1"212 
6 6 6 1"394 1'464 1'511 1'212 

10 4 4 1-483 1"427 1"484 1"272 
2 8 8 1.415 1"427 1'484 1'272 

R (%) 5.91 10"75 7.76 13"87 
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f (  ) + sf(o) 

× [ 4sinh-1 ~I~-~.f(O) + t a n h t / 3 x ' f ( O )  

The final values of 1/yobs and 1/y'¢~1¢ are given in 
Table 4, together with the values off(0)  and the values 
of 1/yzaeh calculated from equation (26b), fitted to 
1/Yobs for the 511 reflexion. The inadequacy of the 
Zachariasen theory is readily apparent. The values of 
1/y'~al¢ given by equation (29) for the 0.865 A data are 
also shown in Fig. 1. Data collected at 0-746 A were 
not used in the final analysis because of the anomalous 
effects mentioned previously. The largest I/yobs value 
(6"955) at 1.077 A was also omitted. 

(ii) Cylindrical crystal 
None of the functions given in equations (28) or (29) 

gave a satisfactory fit for the calcium fluoride data for 
large x and we must therefore reconsider the expres- 
sions for ~(a) and y appropriate to this crystal shape. 

For a cylindrical crystal T= (16/3n) R, where R is the 
radius and T is the mean path length in the plane per- 
pendicular to the cylinder axis. The coefficients of the 
equations 

T n = A n R n (30) 

will be different from those for a spherical crystal (see 
Zachariasen, 1965) and ~0(a) then has the form: 

~(0") : 1 --  O" T-at- ~-45 (0" r ) 2 f ( 0 )  - ~-~-~ (0" T )3 [ . f (0 ) ]  2 

+ -~((7" T )  4 [ .f(  0 ) ]3 __ ~ (  (7' T)s[f(0) ]4 

+~(af)6[f(0)p-...  (31) 
resulting in a series for y (for T>> f)" 

y =  1 - x +-~x2f(O)-  ~x3[f(0)] 2 + 1 - ~ x 4 [ f ( 0 ) ]  3 

__ 1 8 -~5 0 4 3 9 ~6 5 -r~- [ f (  )] +-~- [ f ( O ) ] -  . . .  (32) 

We would therefore expect a different closed form 
to be more suitable in this case and we have found that 
a reasonable closed-form approximation for equation 
(32), ignoring the angle dependence, is 

y =  (erf V3x.)/~/3 (33) 

This approximation is valid for all x and the cor- 
responding expression for y', viz" 

y ' =  [ 1 - - O - - ]  1 
f (  ) + 7(-O}- 

× [ V2n [erf V"3x. f iO)]/v3X-,  f (O) 5`4 , (34) 

was found to give a better fit to the observed data 
than any other of the functions used. 

Final values of 1/yobs and 1/y'~l ¢ are given in Table 5, 
together with the values of f (O)  and the values of 

1/yzach calculated from equation (26b) fitted to 1/yob~ 
for the 155 reflexion. The inadequacy of the Zacharia- 
sen theory is again readily apparent. The values of 
1/Y'¢,lc given by equation (34) for the 0.877 A data are 
also shown in Fig. 2. Because of the severity of the 
extinction and the limited amount of data collected 
at 2 = 1.339 A, measurements at this wavelength were 
not included in the analysis. The 022 reflexion (1/y ~_ 113) 
was also omitted at the other wavelengths. 

Discussion 

It appears that the Zachariasen theory of extinction 
is reasonably adequate for a crystal of general shape 
for x < 1, that is for extinction up to a level of about 
40 % reduction in intensity (y=0.6).  Above this value 
it underestimates the extinction and the neglect of the 
angle dependence becomes increasingly important. In 
addition the form of the extinction correction becomes 
increasingly dependent on the crystal shape. 

The major problem in extending the theory for x > 1 
is that both ¢(a) and y can be determined as power 
series which can be approximated readily by closed 
forms only for x < 1. However, we may note that, al- 
though the coefficients of the power series for y initially 
increase, they then decrease with increasing power of 
x so that convergence is also obtained at large x. Never- 
theless, because of this behaviour it is extremely dif- 
ficult to determine a suitable closed form approxima- 
tion. 

A series of accurate neutron diffraction measure- 
ments has enabled us to find closed form expressions 
for y which account for the observed extinction in a 
spherical and a cylindrical crystal, up to levels of over 
80% extinction in each case. These expressions are 
given in equations (29) and (34), and although we have 
considered only the case for which primary extinction 
can be neglected, the theory can readily be extended 
to take this into account also, by retaining the terms 
in f in equation (15) and considering spherical domains 
as before. 

Extensions of the Zachariasen theory to an aniso- 
tropic treatment have been considered (see, e.g. Hamil- 
ton, 1969) in terms of an anisotropic Gaussian distribu- 
tion of orientation and an ellipsoidal particle shape. 
Hamilton has found that in general this extension re- 
sults in a significant improvement in the R factor, while 
the tensors in most cases refine to the correct symmetry 
even though this is not necessarily constrained. How- 
ever, we should like to emphasize that the introduc- 
tion of anisotropic extinction parameters should be 
treated with great care since they may correlate with 
other parameters of the system and other anisotropic 
effects may be misinterpreted. Moreover, anisotropic 
extinction can arise from variations in the state of per- 
fection within the crystal, since when extinction is 
severe the intensity is very critically dependent on the 
domain size and orientation. This effect was readily 
apparent in the strongest intensities measured for cal- 
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cium fluoride at the longest wavelength (1.339 A) 
which are given in Table 6. The standard deviations 
of these intensities calculated from counting statistics 
are 0.1% and their true accuracy is estimated to be 
about 0.25 %. In spite of this high accuracy of measure- 
ment, which was confirmed by the reproducibility, 
large differences were observed between the intensities 
of equivalent reflexions, that between 044 and 04-4 
being as much as 8.6 %. Further measurements rejected 
non-uniformity of the beam as a possible cause and 
similar measurements on the strontium fluoride crystal 
gave excellent agreement between equivalents. These 
observations are therefore attributed to anisotropy in 
the extinction for the calcium fluoride crystal. How- 
ever, since these differences occur between 180 ° re- 
lated reftexions they must arise from variation in the 
perfection within the crystal and not from anisotropy 
of  the domain shape. In order to overcome this effect 
one must therefore average the intensity over a suitable 
set of  equivalent reflexions, as was done in the present 
analysis, and consider mean values for the domain 
radius and the mosaic spread parameter. 

Table 6. Neutron diffraction data for 4N re flexions 
from calcium fluoride at 2 = 1.339 A 

h k I Intensity ( I - I ) / I  
0 2 2 251,964 +2.6% 
0 ~ 2 239,378 -2.6% 

4 0 0 202,006 -1.0% 
2[ 0 0 206,155 + 1 "0% 

4 2 2 184,138 0 
2[ 2 2 190,903 +3"7% 
4 ~ ~ 179,637 -2"4% 
2[ ~ ~ 181,636 -1"3% 

Table 6 (cont.) 

h k l Intensity ( I - l ) / l  
0 4 4 199,922 +4"3% 
0 2[ 2[ 183,570 -4-3% 

4 4 4 239,224 0 
2[ 4 4 245,883 +2"8% 
4 2[ 2[ 232,935 -2.6% 
2[ 2[ 2[ 238,470 -0"3% 

Finally, we should like to emphasize that although 
we have obtained good agreement between the theory 
and experiment it is likely that some further improve- 
ment could be made in the exact form of the closed- 
form expressions used. It is therefore desirable that 
further experimental tests of this theory be carried out. 
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Absolute Measurement of Strueture Faetors Using a New Dynamical 
Interferenee Effeet 

BY M. HART AND A. D. MILNE 
H. H. Wills Physics Laboratory, University o f  Bristol, England 

(Received 1 August 1969) 

A new method of determining X-ray scattering factors by dynamical interference is described. The 
theoretical background to the interference effect is discussed in detail and an expression for relating 
the fringe period to the structure factor is developed. The method relies on anomalous transmission 
and is therefore most suitable for measurements on nearly perfect crystals of high atomic weight. 
It also has the attractive property of being insensitive to slowly varying lattice strains. Applying the 
method to the 220 reflexion of silicon a value of 8"487+0"017 for the atomic scattering factor has 
been obtained using Mo K~I radiation. This value is in excellent agreement with the author's previous 
results using the Pendell6sung method. 

1. Introduction terminations with a view to comparing the results with 
the values predicted by the different theoretical scat- 

In recent years several attempts have been made to tering models. With adequately precise measurements 
improve the accuracy of absolute structure factor de- the reduction of X-ray structure factors to atomic scat- 


